Pell, B., Bernad, DB, Chien, S.AL Gat, B Muscettola, No, Nayak, PP Wagner,
M.1., and Williams, B.C, A Remote Agent Prototype for Spacectaft Autonomy,”
SPIE Proceedings Vol 2810-Space Sciencecrafi Control and Tracking in the New
Millennwn, SPIE Aunnal Meeting, Denver Colorado, August 4 8, 1996

A Remote Agent Prototype for Spacecrafl Autonomy

Bar ney Pell 1 Douglas F. Bernard Steve A. Chien 8 Frann Gat 8

Nicola Muscettola 1'. Panduwrang Nayak? Michael). Wag ner ¥ Brian C. Williams !

ABSTRACYT

NASA has recently anmou need the New Millentdume Progratn (NMP) to develop “faster, better, cheaper”
spacccraftin order toestablisha “virtval presence inspace. A crucial €ler nent inachieving, this vision is onboard
spacectafl autonolny, requiring, us to automat ¢ functions which have traditionally been achieved on ground by
hurnans, These include planning, aclivities, scquencing, spaccerafl actions, tracking spacecrafl state, ensuring,
correct Tunctioning, recovering, in cases of failure and reconfiguring hardware.

In 1esponse to these challenping requitelnents, we analyzed the spacecrafl domain to deternine is unigue
propertics and developed an architecture which provided the required functionality. This architecture integrates
traditional real- tirme monitoring and control with constiaint-based planning and scheduling, robusl ninlti-thieaded
execution, and model based diagnosis and reconfiguration.

In a five month eflort we successfully demonstrated this implanented architecture in the context of an av-
tonorous inscrtion of a sinmlated spaceeraft into orbit around Saturn, trading ofl sclence and engineering, poals,
and achieving, the mission poals in the face of any single point of hardware failure. This scenario turned out to
be mnong the most, complex handled by each of the component technologies. As a result of this success, the
Integrated architecture has been selected to control the first NMP flight, Deep Spa ce One, in 1998, 1t will be the
first Al syslemn to aulonomously control an actual spacecraft.

keywaords: autonomous robots, agent architectures, action selection and planning, diagnosis, integration and
coordination of ulliple activities, fault protection, oparations, real time systems, modeling,

T INTRODUCTION

T'he Tuture of space exploration calls for establishing a “virtval presence” inspace. This will be reached with a
large mumber of smatt, cheap spacecraft carrying on missions as ambitious as robotic rovers, balloons for extended
atmospheric explorations and robotic submarines. Several new techimologies need to be demonstrate to reach this
goal, and one of the most crucial is certainly on board spacecraft autanorny.

In the traditional approach to spacecraft operations humans carry out on the ground a latg ¢ number of

Pecom Techmologies, NASA Arwes Rescarch Center, MS 260/2, Mofictt Field, CA 94035,

fCacelum Hescarch, NASA Ames Hesearch Center, MS 264/2, Moflett Iicld, CA 94035,

$Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Diive, Pasadena, CA 91108
HEourth Planct, 155A Moflett Park Diive, Suite 104, Sunnyvale, CA 94089,

funictions including planuing, activities, scquencing, spicecraftactions, tra cking the spice craftUs internat hardware
state, ensuring, correct functioning, recovering in cases of failure, and subsequently working around fo wlty sub-
systoams. This approach will not be viable anymore in the future due to (a) round trp light time communication
delays which make joysticking, a deep space ot ssio nhmpossible and (b) a d esive to it the operations tearn and
deep space network (DSN) costs.

11 the new model of operations, the scientists will conmmunicate high-level science goals directly to the space
craft. Thie spacecraft will then perfornin its own science planning and scheduling, translate those schedules into
sequel ices, verify thiat they will not damage the spacecraft, snd ultimately execute them without routine hurnars
intervention. In the case of error recovery, the spaccerafl wounld have to und ersta nd the itupact of the error on its
previously pla v ned sequence and then reschedule in light of the new information.

This work has been carried out within NASA s New Millennium Programn (NM]7), aseries of agg ressive
technolo gy- demonstrationsp acemissions. In orde 1 to assess and demonstrate the applicability of Al technology
to spacecraft autonomy, the NM1’ formed a tean cornbining Al rescarchers with some of the best spacecraft e n-
gincers with the ol~jcc.live of developing and demonstrating an architecture integrating Al tools with traditional
spaceerafl control. Fhe challenge wa s to demonstrate cotplete autonomous operations ina yeyy challenging con -
text: simulated insertion of a Cassini like spacecraft into orhitaround Saturn, trading off science and engincering,
goals, and achieving, the yission in the face of any single poind of hardware failure. This Saturn Qrbit Inscrtion
(S801) scenario was proposed by experienced spacceraft engincers who had participated in sever al previous plan-
ctary nnssions. Although simplified, it still cont ains the most important constraints and sou yees of cornplexities
of a real mission, making it the most diffic ult challenge in the context of the most camnplicated wission phase of
the most advanced spacecraft to date. Further more, the demonstration had to be accornplished in the very short
titne frame of & months,

The unique requirenents of this dotwain led us to the New Millennium Remote Agent (NMRA) architectore
which integrates traditional real-tiime monitoring and control with (a) constraint-based planning, and schedul-
ing, to cnsure achicvernent of long- tertn mission objectives and eflectively manape allocation of scarce system
resources; () robust nnlti- threaded execution, to reliably exccute planned sequences under conditions of uneer-
tainty, 1o rapidly respond to unexpected events such as component fajlures, and to manage concutrent real-time
activities; and (¢) model based diagnosis, to confirtn successful plan exccution and to infer the health of all sysuemn
components based on inherently Himited sensor information.

The New Millennium Remote Agent (NMRA) architecture was successfully demonstrated on the simulated
Sol scenatio last Octobar This success resulted in the inclusion of NMRA in th e flipht software of the first NMP
mission, Deeps Space 1 (DS 1), which is schieduled to levaneh in mid 1998, This will be the fivts £ Al syst cnn to
auntonomously control an actual spacect a f(.

2 SCIENARIO
2.1 Iutroduction

A siinplified Saturn Orhiit Insertion (Sol) scenario was used to define the requiretnents on the technologics and
thelevel of detail neededinmodeling the spacecraft. It included goals snd constraints and an €x @ 1ple sequence
to satisfy thegoals arid constraints. The ¢hiallenge to the autanomous systemn was not to duphicat ¢ this sequence,
but rather to plan and excente tasks in such a rnanner that all constraints were satisfied.

The scenario also included failure scenarios. Thie failure recovery requireinents are as follows:

1. Achieve the mission goals even in the event of any single point hardware failure

2, Consider the Saturn Orbit Insertion burn a special event that, for robustness, requires that all eritical
subsystens operate in their highest reliability modes.

3. Although multiple independent siinultaneous failures are not considered credible, multiple sequential failures
spaced far enough apart to allow recover y of one before consid ering the next- arc considered eredible and
must be accommodated.

2.1.1 Goals

The following poals define the Sol scenario:

. Use the main engine to insert the spacect aft into Saturn Orbit

¢ Acquire andret urnscienceimages of Saturnduring approach

*

Acquire arid return science inages of Saturn’srings neasclosest approach

¢ Assure thatthe caynerais protected fromring particles during ring- planc crossing,

.2 Constramts

N
—

The miodels of the spacceraft as understood by the planner form the context for achieving the above goals.
These models constrain the choices that the planner may make, force certain tasks to be order ed, and force the
addition of tasks Lo 4]lgw the goals ta be achicved. Yor the Sol scenario, the following constraints sig nificantly
aftcet the resulting plaw:

¢ Available spacecraft clectrical power is limited; cach operating mode of cach assernbly requires a predefined
power allocation.

. Availabl ¢ scjence data stora geishi mited; there is not enouglyrocm o accormmuodate both the Sat uiy approach
and Saturn ring, inages sitmultaneoussly

¢ Ouly ane spacceraft pointing, direction may be connmanded at a time. This coup les the scicuce imaging,
activity, thcorbit chiange activity, the Barth cormmnication activity, and the ring safety activity since all
require sore spacecraft axis to be pointed ina particular direction (e. g., antenna toward carth).

« A mamernig me burn requires se veral preparatory steps prior to engine ignition.

2.1.3 Onc Yossible Sequencec:

One possible sequence of €ven s that meets the goals and constraints is shown below. Other sequences are
possible, and c¢tiang s may be made during, exee vtion such that the specific task order deseribed here is not
followed, but all constraints between tasks are satished.

2.1.4 Saturn Orhint Insertion . Scenario Details

The scenario begins one day before initial Saturn periapsis.

A plan is then generated on-board based 011 current on- board inforiation about the state of the spacecraft,
the spacceraft trajectory with resp ect Lo Saturn, the goals for the Saturn orbit insertion mission p hase, and the
system constraints.

Ground controllers desire to know about the success of certain risky activities | such as the firing, o f pyrotechnic
devices early enouglt to take action if failures occur. This forces certain activities to be schieduled early, followed
by communic ation of the results to the grou nd controllers on Earth.

Science images are desired of Saturn initial approach and of the rings during closest approach. Limited data
recorder space ncats that the plat should include the recorder dow n-load after the approach imaging, arid before

the ring ninaging.

Power is a limited resource and engine ignition for the SOlburn occurs when power is the tightest. Non-
essential equipiment (e.g., science instruments and reaction wheels) must be powered oft prior to engine ignition.

Sotie devices need to be warmned up prior o use. FBachi must be turned on carly enough to assure avatl ab ility
when needed.

For the eritical SOI 1nission phase, backup units arc also wartned up andready to go
The tuainengine is prepared for use by powering on its electronics, opening, lateh valves, and pre aiming the
gimbaled engine. These activities arc scheduled early enough that failures allow time to switch to the backup

engine.

During, SOI preparation aud science collection, the spacecraft crosses the Saturn ring, plane and must go to
an at titude th at shields the cam era from ring, particles,

The spacecralt turns to the burn attitude, main engine ignition oceurs, and the space craft is inserted into
Saturn orbit.

After the burn, the spacecraft is returned to a safc state

Thie orbit insertion burn is scheduled to end at periapsis so that science observations may take advantage of
the closest approach viewing,.

The ring-plane linages are down-linked to the Farth as soon as possible.

After transniissio jy of science and engincering data to the ground, the scenario js complete

T'he following failure i

The following fallure scenarios also hadto behandled successfully:

Thic main engine overheats during the burn, An overheated engine can damage the rest of the spacecraft, so
a reflex response is needed o shut the burn dow 11 upon detection. The backup engine will thenbe used onthe
next burn atternpt. This requires re-planning, with burn restart time scheduled for when all propulsion eguipment
has cooled down sufliciently. 11 ie duration of the new burn 1t st be adjusted based on the anount of burn

accomplished in the first attemnpt.

A gyroscop e falls to give data. Since the backup gyroscope is onand warmed up, a simple switch is perforined

while the burn continues without ipterruption.

3 DOMAIN AND REQUIREMENTS

The spacecrafl domnain places a number of requirements 011 the software architecture that differentiates it
fromn domains considered by other researchers. There are three major properties of the domain that drove tne
architecture desig u.

First, a spacec raft must be able to carry on autonomous operations for long periods of time with no humnan
mteraction. This requirciment stems from (@) round trip light tiine connmunication delays which make joysticking
a deep space mission itnpossible and (L) a desire to limit the operations tean and deep space network (1ISN)
costs.

Therequirement for autouoimous operations over long periods is further complicated by two additional features
o f the dowatu tight resource constraints and hard deadlines. A spacecraft uses various resources, including
obvious ones like fuel and electrical power, and less obvious ones like the nmmber of times a battery can be
reliably discharged and recharged. Some of these resources are renewable but most of them are not. Henee,
autonomous operatious requires significant einphasis 011 the careful utilization of non-renewable resourcesandon
planning for the replaceinent of renewable resources before they runy dangerously low. Spacecraft operations arc
also characterized by the presence of hard deadlines due to the fact that the eflicie ney of orbit chang emanicuvers
1s anextremely strong function of the location of the sp acecraft in its orbit- which is a function of time. For
example, the timie at which SO | must be achieved is constrainedto lie within a two hour window. Sophisticated
plan ning and scheduling syster n should be used to ensure th previous requirement.

The second central require.~[lellt of spacecraft operation is high reliability. Sitice asp acecrafl is very expensive
and often unique, it is essential that it achieve its mission with a very high level of reliability. Part of this high
rchability is achieved throug hithe usc of very reliable hardware. However, the harsh enviromment of space or
the inability to test in all fight conditions can still cause unexpected hardware failui es, sothatthe software
architee ture is required to cotupensate for such contingencies. Fhis requirement dictate’s the use of anexecutive
and elaborate systen-level fault protection that can rapidly rcact to contingen cies by retrying failed aclions,
reconfiguring spacecraft subsysteins, or safi ng the spacec raft to prevent further, potentially irretrievable, darnag ¢
Of equal danger arc. catastrophic software bugs, often introduced through a misinateh of spacecraft iodels in
theheads of diflerent software. engincers. This requirement dictates the need Lo mmaximize the use of a consistent
model shared between the different executive functions.

The requiretnent of high reliability is further complicated by the fact that there is linited observability into
thie spacecraft’s state duc to thie availability of a limited number of sensors. The addition of sensors imy les
added mass!, power, cabling, and up front enginecring time and effort. Pach sensormustadd clear value to
the nssion to be justified forinclusion. Furthermore, sensors are typ ically no more reliable than the associated
spaceeraft hardware, making it that much more diflicult to deduce the true state of the spacecraft hardware.
These requirements dictate the use. of sophisticated model based diagnosis inethods for identifying the true state
of the spacce raft hardware. These 11iethods predict unobservable state variables using, a spacecy aft 1todel, and
can cffectively handle sensor failures. Inaddition these diagnostjc methods must be angmented with sop histicated
1110 del-based control mnethods that help the exccutive to reconfig ure hardware in view ©f failure knowledge and to
predict the consequences of these actions.

The third ceutral requiremnent of spacecraft operation is that of concurient acfivity. The spacecraft has a
munber of diflerent subsystemns, all of which operate concurrently. Hence, reasoning about the 8pa cecraft needs
to reflect its concurrent nature. In particular, the plannmer/scheduler needs to be able to scbiedule concurrent

Hua sp acect aft, ynass directly t1atslates to the cost of launch andth e cost of carrying extia fuel toachieveallinission maneuvers.

Planning & S s 0t v 1 —p] Ground
Scdradling sof tware:

 Mdel-tased Kkeal- Ting Hardware/
Mode 1dent. anxd Monitors Control Dynami cs
Recovery Systen Similator

Figure 1: NMRA architecture

activities indiflerent parts of thiespacecraft,including constraints between concurre nt act, ivities. The executive
needs to have concurrent threads active to handle concurrent ¢ onuniands to diflerent parts of the spacecraft. ‘1 he
model-based diagnosis and reconfiguration syste m needs to handle coucurrent chianges in the spacecraft state,
either dueto schied uled events or clue to failures,

4 ARCI II'T'1CTU RE OVERVIIEW

In the architecture autonomous operations is achieved through tl e cooperation of § distinet compounents
(Figure 1).

Continuous autonomous operation is achieved by the repetition of the following cycle

1. Retrieve high level goals fromn the mission’s goals database. In the actual mission, goals can be known at
the beginning of the mnission, put into the databasc by cormmnunication from g round mission control or Carl
originate from the operations of space eraft subsysteins {c.g., ‘(take more pictures of star tierds to estimate
positionand velocity of the spat.ccrafl”).

o)

. Ask the planner/sch eduler to generate a schedule. The planner receives the goals, the scheduling horizon,
i.e., the time interval that the scl iedule needs to cover , and aninitial state, 1.e., the state of all relevant
spacecraft subsystems at the beginning of the scheduling horizon. The resulting scl ie dule is represented as
a set of tokens placed on various statevariabletiinelities, with tetnporal constraints betwee u tokens.

3. Send the new schedule generated by the planner to the czecutive. The executive will continueexecuting
its current schedule and start exccuting tile new schedule when the clock reaches the beginning of the | ow
scheduling horizon. The executive translates the abstract tokens contained in the schedule into a sequence of
lower level spacecraft cormmands that correctly implement the tokens and the constraints between tokens. It
then executes these commands, inaking, sure that {he ¢ ommands succced and either retries failed commanids
or generates an alternate low level commmand se quence that achieve the token. hard commaudexecution
failures may require the modification of the schied ule in which case the executive will coordinate the actions
needed to keep the spacecraft in a “safe state” and request the ge neration of a new sctiedule from the
planner.

4. Repeat the cycle from step 1 when one of the following conditions apply:

(2) Fxceution (veal) time has reached the end of the scheduling horizon minus the estimated time needed
for the planner to generate a schedule for the following scheduling horizon:

(b) The exceutive has requested a new schedule as a result of a hard failure.

Schedule execution is achieved through the cooperation of the the executive aud the other three architectural
layers. The executive reasons about spacecraft state interins of a set of component modes. The mode identi-
fication (M) layer is responsible for providing this level of ahstraction to the executive.. Mltakes as input the
executive command sequence and observations from sensors to identify the current mode (nominal or failed) of
cach spacecraft component. Thie monitoring layer takes the raw sensor data stream, and discretizes it to the
abst ract level re quired by MI1. Finally, the control a nd real-timne system layer takes commands from the executi ve
arid provides the actual control of the low levelstate of the spacecraft. It is responsible for providing the low
level sensor data streamn to the monitors.

The 4 lower layers are always active and in concurrent execution. This ensures the high reliability required hy

the domain. The planner/scheduler is the only component that is activated as a “batch process” and dies after
a new schedule has been generated.

Monitoring and control follow traditional approaches to spacecraft softwarcand will not be discussed here. In
the following we will concentrate on the other nio dules.

4.1 Planner

The goal of the plauner /scheduler is to genierate a set of synchronized hip;ll-level comninandsthat once executed
will achieve mission goals.

Particularly in the sp acecraft domain planning and scheduling aspects of the problemn need to be tightly
integ, rated. Clearly the planner needs w recursively select and schiedule appropriate activities to achieve mission
goals and any oth er subgoals generated by these a cti viti es. 1t also nceds to synchronize activities and allocate
global resources over time (e.g., power and data stora e capacity). However in this domain (b ut this is also tiuc
in general) subgoals may be generated also due to limited avail ability of resources over tine. For example, in
a mssion 16 would be preferable to keep scie ntifi¢ mistruments on as long as possible (to maximize the amount
of science gather ed). However hinited power availability may foree a temporary instrument shut-down when
othier more mission critical subsysterns need to be functioning,. In this case the allot.atiorl of powerto cr itical
subsysteins (thenain result of ascheduling step) generates the subgoal “instrurent must be of!” (which requires
the application of a planuing step). Considering sivnultancously the consequences of planning and scheduling steps
enables a plauning algorithin to exert more cont rol on the order in which decisions arc made and to therefore
keep search complexity under control.

Besides activities, the planner must also “schiedule” the oceurrence states and conditions that need to be
monitored to ensure that high level spacecraft conditionisare correct for goa b (such as spacecraft pointing states,
spacec raft acceleration and stab 1lity requirements, ete.). These states can also consur ne resources and have finite
durations.

The planmer used in the NMRA archiitecture consists of a heuristic search engine operating on a temporal
databasc. The scarch €ng inc posts constraints on the basis of external goals or constraint teinp lates stored in a
nmodel of the spacecraft. Using an iterative sainpling approach, the planuer also tries to heuristically iinprove on
certain aspects of schedule quality, although it does not guarantee even local optimality along this metric. The
temporal database and the facilities for defining and accessing model information during search are provided by
the 11 S'1'S systein(Muscettola1994).

The domaininodel contains an explicit declaration of the spacecraft subsysterns 011 which ary activity 01 a
st ate will oc cur. Inthe temmporal database each subsystem hasan associate d titneline 011 which the planuer inserts
activities andstates and resolves resource allocationconflicts. Themodel aso containst he declaration of duration
constraint and of templates of temporal constraints between activities and states. Such constraints have to be
sat isficd by any schedule stored in the temporal database for it to be consistent with the physies of the dorn ain.
Temporal constraint templates absolve the ro]c of gencralized planning operators aud ac defined for any activity
or statein the domain. The temporal database also provides constraint propagation services to verify the global
consistency of thie constraints posted so far.

The constraint template in Figure 2 describes the 6 conditions needed for anengine burnto initiate correctly
(activity HFngine. Buru_lguition scheduled on the (Engine Op.State) timeline). Constraint 6 represents a request
for powerthat increases thelevel of Power. Used onthe timeline (NewMaap. Power- Mgt Power) of an amount
returned by the Lisp function call (co mpute-power Engine. Burn. lguition). Iixplicit declaration of function calls
i the model such as the one above provides the means for the planner to invoke “expert,” modules to provide
nar row but deep levels of expertise in the cor nputation of various parameters such as durat ions or temperature
and power levels,

4.2 NHybrid executive

The executive is responsible for perforining runtime management of all systemn activities. The executive’s
functions include process synchromzation, process d epend cucy ma nagement, hardware reconfiguration and run-
tilme resource management, and the execcution of fault recovery procedures. The executive invokes the planner
and mode identification compo nenits to he Ip 1t perform these functions. The executive also controls the low-level
control software by setting its modes and supplying parar neters and by responding to mounitored events. The
exceutive thus perforins similar functions to a traditional operating systent. The main difference is that when
unex pected cont ingencies oceur, a traditional operating syste m can only issue a report and ab ort the offending,
process, relying on user intervention to recover fromthe problem. Our executive must be able to take corrective
action automati cally, fOr exarnpleinorder tomect a tight orbital insertion window. our approach involved the
developient of @ hybrid exec utive that shares exce ution responsibilities between a classical reactive execution
systein, R APS (I'irby 1978) and a n ovel model-based reconfipuration systemn, called Livingstone.

RAPS provides a specialized representation language for describing context-dependent contingent response
procedures, with anevent-driven execution setnantics. The lang uage ensures reactivity,is natural for decomposing,
tasks and corresponding methods, and makes it easy to express monitoring and contingent action schemas. Its
runtir ne systern then manages the reactive exploration of a space of alternative actions by scarching through a
space of task decor npositions.

The basic runtimeloop of the executive is illustrated in Figure 3. The system maintains an agenda on which
alltasks arc stored. ‘] "asks arceitheractive or slecping. 011 cach pass through the loop, the executive checks the
external world to see if any new events have occured. Fxamples of events include mod el updates from the mode
inference system, announcements of commanded activity completion from external soft wa re, and requests from
external users. The exccutive responds to these events by updating its internal inodel of the world, chauging the
status of aflected tasks, and iustalling new tasks onto the agenda. It then selects some active task {(hased on
heuristics) and performns a small amount of processing on the task. Processing a high- level task involves breaking,
it up into subtasks, possibly choosing ainong multiple methods, whereas processing a primitive task involves
sending messa ges to externalso ftwarcsystems. At this point, the agenda is updated, and the basic reactive loop
repcats.

RAYS encourages a close adherence to a reactive prograunning principle of hmiting deductions within the
sense-act loop to that of constructing task decompositions using, a limited for mn of atchi ng. This ensures
quick response time, which is essential to the survival of the spacecraft. Nevertheless it places a burden on

(Define.Compatibility
((Engine Op_State) (Engine.Rurn-ignition))
:compatibility.spec
(AND
;3 L.The.messure in the engine tanks must be good during ignition
(contained.by ((Engine.Tanks Pressure) (Engine.Tanks.P1 essure.Good)))

;; ?..The Fngine must have been finished late burn preparation
(met_by ((Engine Op. State) (Engine.Burn.late.Prep)))

2. The Engine goes into sustained burn state next

)

(meets ((Fngine op.state) (Engine.Burn)))

;3 4. The injectortemperature must be inrange at start of burn
(contained.by ((Engine.Injector Temp) (Temperature(Ready))))

;; 5. Needs VDECU 0 n
(contained.by ((VDECU Op.State) (VDECU.On)))

s> -6 The following amount Of Power will be consumed
(equal ((NewMaap.Power Mgmt Power)
(+ (Lisp (compute-power ’Engine.Burn.lgnition))
Power Used)))))

(heTine.Duration.Spec
((Engine Op.State) (Engine.Burn.lgnition))

;3 Mminimum duration
(Lisp (compute-duration ’EngineBurn.lgnition :minjmum))
;3 aximum duration
(Iisp (coruputex duration ’Engine Burn.Ignition rmaximum))

)

Figure 2: Constraints on the Engine. Burn_lgnilion activity

Executive Fetch Process Update
Input New Fvents Iivents Memory

L..-

{ S _ w]_m .

Update U Fixpand Update
Agenda Definition Agenda
‘ — T L= -_ —_ T e —
Defined l
Iixecutive Fixecute X{ij"{iﬂi‘f_‘;, Process D Fvaluate
Qutput Command Best Task Ready Tasks

L - L\ @ =]}

Iigure 3: Executive Task Expansion Flowchart

the programmer of deducing a priort the consequ ences of failures and contingencies. This is exacerbated by
subtle hardware interactions, multiple aria unr nodeled failures, the mixture of interactions between cor nprutation,
elect ronics and hydraulic subsystems, and limited observability due to sensor costs.

The model-based reconfiguration systemn, Livingstone, complements these reactive capabilities by providing a
set of deductive capabilitics along the sense-act loop that operate on a single, compositional 1110 del. These models
permit significant on the {ly deduction of systein Wide interactions, usedto process new sensor information or to
cvaluate the effects of alternate recovery acti ons. Yet Livi ngstone respects the intent of reactive syste 111s, using
propositional deductive capahilities coupled to anytime algorithy ns that have proven exceptionally efficient in the
model-based diag nosis of causal systemns. Hence livingstone is able to reason reactively from k nowledge of failure,
through the models, to optimal actions that reestablish the planner’s primitive goals while obviating the fail ures’
cllects.

Nevertheless, the assu rance of fast inference is achieved through strong restrictions on the representation used
for possible recovery aclions and even more severe limitations on the way in which these actions are comnbined.
If reactivity is tobepreserved, then the only alternative is for a programmer or deductive system to script
these cor nplex actions before the fact. Hence RAPS provides a natural complement to Livingstone's deductive
capabilities, Tor example, with respect to recovery, lLivingstone provides a service for selecting, composing
together and drduc.iii?, the eflects of basic actions, inlight of failure knowledge. Meanwhile RAPS provides
powerful capabilities for elaborating and interleaving these basic actions into more complex sequences, which in
turninay be further evaluated through Livingstone’s deductive cap abilities.

4 .3 Mode identification

The mode identification (M) layer of the NMRA architecture is responsible for identifying the current operat-
ing or failure mode of each component in the spacecraft. M1is the sensing co miponent of Livin gstone’s model- based
reconfiguration capability, and provides a layer of abstraction to the exec utive: it allows the executive to reason
ab out the State of thespacec raft inter ms of compounent modes, rather thanin terms of low level sensor val ves.
(Williams & Nayak 1996) provides a detailed technicaldescription of Livingstone.

Contlict-directed .
best first Monitors
search engine -

A YA Y
Behavior
Conflict - prcdic[ion) Models
datalbase: engine

Figure 4: Architecture of Livingstone'smodeidentification capability.

Ml providesa variety of functions withinthe ova-all architecture. These include:

« Mode confirmation: Provide confirmation to the executive that a partic ular spacecraft cornmandhas comn -
pleted successfully.

« Aunomaly detection: Ideutify observed spacecraft behavior that is inconsistent with its expected behavior.

« Fault isolation and diagnosis: Identify cornponents whose failures explain detected anomalies. In cases

wheremodels Of comnponent failure C! Xi &, id entify the particular failuremiodes Of componentsthat explain
anomalies.

« Token tracking: Monitor the state of planner tokens, allowing the executive to monitor planexecution,

MI uses algorithins adapted from mnodel-based diagnosis (de Kleer & Williains 1987;1989) to provide the above
functions (sec Figure 4). The key idea underlying model-based diagnosis is that the current state of the spacecraft
can be described by a combination of component modes only if the set of niodels associate d with these modes
is consistent with the observed sensor values. Following de Kleer & Williains (1 989), M uses a conflict directed
best-first scare.}1 tofind the most likely combination of cornponent imodes consistent with the observations. Note
that this methodology is independent of the actual set of available sensors. Furtherore, it does not require that
all aspects of the spacccraft state are directly observable, providing an elegant solution to the problem of hmited
observability discussed in Section 3.

The usc of model-based diagnosis algorithins iinmediately provides Ml with anuinber of additional features.
First, the scarch algorithins are sound and comnplete, providing a guarantee Of coverage with respect to the mo dels
used. Second, the model building methodology is modular, which simplifies i o del construction and maintenance,
and supports reuse. Third, the algorithins extend smoothly to haundling multiple faults. Pourth, while the
algorithins do not require explicit fault models for each cornponent, they can casily exploit available fault models
to find likely failures.

M1 extends the basic ideas of model-based diagnosis by inodeling each comnponent as a finite state machine,
and the whole spacecraft as a set, of concurrent, synclironous state machines. Modeling components as finite
state machines allows M] to eflectively track state changes resulting from executive corr nand s. Modeling the
spacecraft as a concur rent machine allows M1 to eflectively track concurrent state changes caused either by
exccutive cominands or compounent failures.

Another important feature of Ml is that it mo dels the behavior of cach component inode using abstract, or
qualitative, models (Weld & de Kleer 1990; de Kleer & Williamns 1991). Thiese abstract 110 dels are cucoded as
a set of propositional clauses, allowing the use of cflicient unit propagation for b el iavi or prediction. In additi on
to supporting eflicient behavior prediction, abstract models are Inucl; easier to acquire than detailed quantitative
en gineering models, and yield more robust predictions since small changes in the underlying parameters do not

aflect the abstract behavior of the, spacceraft. Spacecrafl modes are a symbolic abstraction of non-discrete seusor
values and arc synt hesized by the monitoring module

Finally, Livingstone uses a single model to performall of MI's functions, also used for the executive fun ctions
of modcl-based recovery and reconfiguration. It also uses the kernel algorithin, gencrali zed from diagnosis, to
performall of these Mland executive functions. Tlie combination of a small kernel with a singlec model, and
the process of exercising these through multiple uses. contributes significantly to the robustuness of the comnplete
systerrn.

5 IMYI,12MENTA’-1'10N

The iinpleinented NMRA architecture successfully demnonstrated planning, of a nominal scenario, concurrent

execution and monitoring, fault isolation, recovery andre-plannin g on asirnulation of the simplified Cassini SOI
scenario.

The planner modeled the domain with 22 parallel timelines aud 52 distinct tetnporal constraint templates.
Fach template included an average of 3 temporal constraints of whichan average of 1.4 constraintssynchronized
diflerent timelines. The resulting schiedule for the nominal scenario included 200 distinet time intervals; a schedule
generated after re-planning due to engine burn interruption included 123 titne intervals. The planner genecrated
these schedules exploring less than 500 search states in an elapsed time of less than 15 minutes on a SPARC-10.
Considering the computational resources availableinthe 1) S 1 missionandthe backgroundnature of the planuing
process, this speed is acceptable with respect to tile performancenecded for 1) S 1,

The executive contained | 00 raps with an average of 2.7 steps per raps. The nominal schiedule was translated
into atask net with 465 steps, making it the biggest RAP to date. The executive interacted with the underlying
control loops which operated at a cycle frequency of 4 Hz. This performance level is actually higher than that
needed to meet the requirernents of the D' S-1nssion.

The SOl model for the mode identification and recovery system included 80 sp acecraft components with
an average of 3.5miodes per comnponent. The structure anddynatnics of the domain was captured by 3424
propositions and 11101 clauses. Inspite of the very large size of theimno del, the conflict- centered algorithms
permitted fast fault isolation and determinationof recovery actions. Faultisolation took between 4 and 16 search
steps (1.1 to 5.5 seconds on a SPARC-5) with an average of 7steps (2.2 seconds). Recovery took between 4 and
20 steps (1.6 to 6.1seconds) with anaverage of 9.3 steps (3.1seconds)

6 D 1S CUSSION

Mauy tmportant aspects of our architecture, from the perspective of Al resecarch, follow from our use of a
heterogeneous architecture and from the significant differences between the spa cecraft dom ain and the mobile
robot domaiu.

6.1 Hecterogencous knowledge representation

T'he research approach to an architecture for autonomy is usually to seek a unified systemn based on auniform
representational and computational frainework. While this is a very iinportaut goal, often thic complexity of a
real-world domain forces researchers to conpromise on complete autonomy or to address simpler domains and

applications. In our case the challenge was to acliteve complete autoniorny for a very cotplex domainin linited
amount of time. T h erefore we chose from the o utset to use state- o - th e-art, g en eral-purp ose ¢ orupon ents that
hiad been applied to solving isolated problems inthe domain. The main architectural challenge was therefore to
integrate these components. Themain source of difliculty here was that our computationalenginesall require
different representations. This heterogeneity has both benefits and difficulties.

Onebenefit of having each engine look at tire spacecraft from a diflerent perspective is that the heterogeneous
knowledge acquisition process aids in attaining coverage and completeness. Fach new perspective on a subsystern
potentially increases the understanding, and hence improves themo deling, for each of the other coriponents which
also represent knowledge of that subsystemn. Another benefit is redundancy, where overla pping models enable one
corponent to compensate for restrictious in the representation of another commponent. This is particularly true for
overlapping responsibility in the hybrid executive. A thirdbenefit istask specialization, in whicheach coil-i~)orlerlt,
is optimized for solving certain kinds of tasks, Thismecausthat we earl usc each component to solve problerns
for which it is well suited, rather thanrequire one cornponent to solve al problems (a similar point is made by
Bonassoet al. (1996)).

Animportant example of representational differences that we found was between the planner/sched uler and
thehybrid execution system. In NMRA the plauner is concerned with activities at a high-level of ab straction
which encapsulates a detailed scequence of executive-level commands. A fundamentalobjective for the planner is
to allot.atc resources to the high-level activities so as to provide atiine arid resource envelope that will ensure
correctness of execution for each executive-level det ailed sequence. Aninterval based representation is eminently
switable for this purpose. ¥rom this perspective the planner dots not really need to know if a time interval
pertains to an activity or a state. However, this knowledge is instead crucial to ensure a correct execution.lhe
executive is emiuently interested inthe occurrence of event, the transition between time intervals in the planner’s
perspective. To generate the ap propriate commands and set up the appropriate sensor monitors, the executive
needs to know if an event is controllable (the executive needs to send a command), observable (the exccutive
expects sensory information) or neither (the executive cari deduce information on the state on the basis of the
domainnodel). our approach localizes such distinctions to the exccut ive’s knowledge representation. This frees
the planuer to reason efliciently about intervals, and enables us to move responsibility flexibly between other
architect ural coruponents (for example, let the control tas zshandle an activity which was formerly decomp osed
by the executive, or vice-versa) without having to modily the planner’s models.

While heterogeneous representations haveanuinber of benefits, they also raise some difficulties. Most signifi-
caut of these are the possibility for models to diverge rather than converge, arid theneed to duplicat e knowledge
representation efforts. We have made somne progress on this front by heading tow ard a more unified representation
of somie modeled properties. First, the unified modeling for MI/MR in Livingstone (see Section 4.3) has proven
to be extremely useful, Second, we use code generation techniques to translat e some maodeled properties, such
as device power requiretnents, into the different representations nsed for ea ch cornputational eng ine. Ideally, we
would like to head toward a single representation of the spacecraft (the onetruemodel,aholy grail of Al), but we
mtend to do so always generalizing froin powerful inodels capable of handling the complexities of our real-world
domain,

6.2 Differences with the mobot domain

Many of the Al autonomy architect ures have been developed with respect to mobile robots (mobots). T'wo
differences in particular arc the role of pereeptionand failure handling inthe two domnains.

Mauny of the problems of perception commoninmobilerobot architectures were not sighificant in our domain.
NMRA is focused onthespacecraft’s state, and sensing the state of asynthetic artifact is much easier thansensing
and understanding a complex natural environment. Further more, only limited aspects of the relationship of the
spacecraft to its environment were sensed using sophisticated sensors, e.g., spacecraft acceleration, spacecraft

angular velocity, sun position. Results from such sensors are easy to understand and incorporate into the model
of thespacecraft’s state.

Second, there are iinportant differences in the strucrure 0f unexpected contingencies between the spacecraft
domain and the mobile robot domain. The inajor difference is that there are almost no serendip itous contingencies
on spat.cw.rafL. Because spacecraft are carefully de.signed to perforinanarrow, specific mission, andany deviation
is considered a failure. By contrast, multiple outcomes of actions and unexpected contingeuncies for mobots are
often diflicult to dichotornize into success and failure; mobots can sometimies achieve their goals by performing
randown actions. This distinction is manifested in the design of the RAY language, which recognizes failure of
a plan step, but does not provide a mecchanism for failure recovery per se Instead, failure recovery procedures
must be written like any other method, to be triggered ontheresult and context of the failure rather than the
failure itself.

Moreover, mobots are typically concerned with failures in the interaction between robot and environinent.
These failures arc typicaly intermittent.In the case of spacecraft, a perinanent hardware failure will not go away
even if the systern recovers this time. Having now limited capabilities, tile agent st plan and exccute behavior
with new constraints in mind, and make future inferences relative to the new systemst ate. T'his raises a need for
a systcrll-level approach to fault protection, whichultitnately resulted in the immportant role of Livingstone and
in several architectural Tequitements wo support replanning in the case of failures.

7 1 LATED WORK

The New Millennium Retnote Agent (NMRA) arc.hike.ture 1s closely related to the 371 (th ree-tier) architecture
described in (Bonasso et al.] 996). The 31" architect ure co ns ists of a deliberative cornponent and a real-time
control component connccted by a reactive conditional sequer icer. We and Bonasso both use RAPS (Firby 1978)
as our sequencer, although we are developing a new sequencer which is more closely tailored to the demands
of the spacecraft environment (Gat]996).2 Our deliberator is & traditional Al plauner based on the HST'S
temporal datab ase (Muscettola 1994), and our contrel comnponent is a traditional sp acecraft attitude control
systemn (ackney, Bernard, & Rasmussen 1993). We also add an architect yral ¢ omp oneng explicitly dedicated to
wortd modeling (the 1miode identifier), and distinguish between control and monitoring. In contrast to the system
described by Bonasso, the primme moverin our system is the RAP sequencer, not the planner. Thie planmer is
viewed as a service invoked and controlled by the sequencer. This is necessary because comnputation is a limited
resource (clue tothe hard timeconstraints) aud so the relatively expensive operation of the planner must be
carefully controlled. In this respect, our architecture follows the design of the AT ANTIS arch itecture (G at
1999).

The current state of the art In spacecraft autonomy is represented by the attitude and articulation control sub
system (A ACS) on the Cassini spacecraft (Brown, Bernard, & Rasmussen 1095; Hackuey, Bernard, & Rasmussen
1993) (which supplied the Saturn Orbit Insertion scenario used in our prototype). Theautonomny capabilities of
Cassini include context- dependent comnmand handling, resource management and fault protection. Planuing is a
ground (rather than on-board) function and on-board replanning is linited to a couple Of predefined contingencies.
Anextensive set of fault 1onitors is used to filter measurements and warn the systemn of both unacceptable and
ofl-nominal behavior. Fault diagnosis and recovery arerule- based. That is, for every possiblefault or set of faults,
the monitor states leading to a particular diagnosis arc explicitly encoded into rules. Likewise, the fault responses
for each diagnosis are explicitly encoded by hand. Robustness is achieved indiflicult-to diagnose situations by
setting the systemn to a simple, known state from which capabilities are added incremnentally until full capability
is achieved or the fault, is unambiguously identified. The NMRA architecture uses a model based fault diagnosis
systert, adds an on-hoard planner, and greatly enhances the capabilities of the on- board sequericer, result ing in
a dramnatic leap ahead in autonomy capability.

2The st systemn (Gat 1996) has now replaced RAP'S as the core engitieforthe 1) S-] Fxecutive.

Ahmed, Aljabri, & Fldred (1994) have also worked on architecture for autonomous spacecraft, ‘1'heir architec-
ture integrates planning and execution, using TCA (Simmons1990)as a sequencing mechanisin. However. they
focused only onasubset of the problem, that of autonomous maneuver planning, which will be incorporated into
our work as part of the DS-1 mission.

Among the many general-purpose autonomty architectures is Guardian (Hayes-Roth 1995), a two-layer ar-
chitecture which has been used for medical monitoring of intensive care patients. l.ike the spacecraft dornain,
intensive care has hard real-time deadlines imposed by the environ ment and operational criticality. One notable
feature of the Guardian architecture is its ability to dynamically change tile amount of cornputational resources
being devoted to its various components. The N MRA architecture also has this ability, but the approaches are
quite different. Guardian manages computational resources by changing the rates a which messages are sent to
the various parts ofthc system. The NMRA architecture manages comnputational resources by giving the executive
control over deliberative processes, which are managed according to the knowledge encoded in the RAPs.

SOAR (laaird, Newell, & Rosenbloom 1987) is an architecture based on a general-purpose search mechanism
and a learning mechanisin that compiles the results of past searches for fast response in tile future. SOAR has been
used to control flight simulators, a domnainwhich also has hardreal-time constraints and operational criticality
(Tambe et al. 1995). CIRCA (Musliner, Durfee, & Shin1993) is an arch itecture that uses a slow Al component
to provide guidance to a real- time scheduler that guarantees hard real-timne response when possible within the
constraints. Noreils & Chatila (1995) describes amobile robot coutrol architecture that combines planning,
execution, monitoring, and contingency recovery. Cypress is an architecture which combines aplanning and an
exccution systemn (SIPE-11 and PRS (Georgefl' & Lansky 1987)) using @ cotnmon representation catied ACTS
(Wilkins & Myers 1995). Thenain diflerence between Cypress and our systern is our use of aninterval-based
planner rather than an operator-based planner.

8§ CONCLUSIONS ANI) FUTURE WORK

T'his paper has described NM RA, animplemented architecture for autonomous sp acecraft. Ttie architecture
was driven by acareful analysis of the spacecraft domain, and integrates traditional real- tirne monitoring and con-
trol with constraint-based planning and scheduling, robust multi-threaded execution, aud rrlodel-based diagnosis
and reconfiguration. Theimplermented architecture was successfully demonstrated on anextremely challenging,
stinulated spacecraft autonorny scenario. As a result, the architecture will controlthe first flight of NASA’s
New Millennium Program (NM}'). The spacecraft, NMP Deep Space One(1)S-1), will launchin1998 arid will
autonomously cruise to and fly-by an asteroid and acomet. This will be the first Al systein to autonomously
controlan actual spacecraft,

Our iminediate work for 13 S-1consists I ainly in acquiring and validating models of the 1) S-1 spacecraft and
in eliciting and addressing mission requiremnents. 1o make this possible, we are working on developing better
tools forsharing models across the different heterogencous architectural components, and for model verification
and validation.

Longer termn, wc see at least threcinajor areas of research with respect to our autonomous spacecraft archi-
tecture. First, our architecture could benefit fromn anincreased use of sirmulation. Currently we u sc! asimulator
for development and testing the software. This could beextended to facilitate interactive knowledge acquisition
andrefinement, to iimprove projection in the planner, or to provide a tighter integration between planning and
execution(Drummond, Bresin a, & Swanson 1994; I evi nson 1994). Second, our architect ureleaves openissuesof
machine learning, which could be used to tune pararneters in the control systern, for optimizing search control
in planning, or for modifying method selection priorities during execution. Third, we see substantial benefits in
having a single representation of the spacecraft, supporting mnultiple uses by processes of abstraction and traus-
lation. W c believe that progress toward this goal is best made by gencralizing fromn powerful, focused models

cap able of representing the c o plexiti es Of areal-world domain.

9 ACKNOWLEDGMENTS

The rescarch described in this paper was carried out atthe Jet Propulsion Laboratory, California Iustitute
of Technology, under contract with the National Aeronautics and Space Adr ninistration arid at the National
Acronautics and Space Administration’s Amnes Research Center.

The Authors would like to acknowledge theinvaluable contributions of Guy K. Manand Robert 1), Rasinussen
for their work indefining a vision model for spacecraft autonomny that evolved into this effort,

The Authors would also like to acknowledge the contributions of Guy 1{. Man and Richard Doyle of JPI, and
Gregg Swietck of NASA Amesfor their leadership insecing the necessity and possibility for advancesinthe area
of spacecraft autonomy and their iusight in recornmending and supporting the approach that we took.

Inaddition to the authors, the NewMaap autonomy prototype was accom plished through the efforts of Charles
Fry, Dennis DeCoste, Rob Sherwood, Kim Gostelow, Asif Ahmed, Hans Thomnas, llah Nourbakhsh, and Robert
Kanefsky.

The authors are grateful to Chris Plaunt and Ron Keesing, for help with the preparation of this pa per.

10 REFERENCLES
[1T Ahed, AL Aljabri, A. S.; and Pldred, D. 1994, Demonstration of on-b oard maneuver planning using
autonomous siw architecture. In 8th Annual AIAA/USU Conference on Small Satellites.

[2] Bonasso, R. 17.; Kartenkamp, D.; Miller, D.;and Slack, M. 1996. Iixpreriences wi th an architecture for
mtelligent, reactive agents. JETAIL to appear.

[3] Brown, G .; Bernard, 1D.; and Rasimussen, R. 1995, Attitu de and articulation control for the cassini sp acecrafl:
A faulttolerance overview. In74th A 1A A/IEIT Digital Avionics SystemsConference.

[4] deKleer, J., and Williams, B. C.1987. Diagnosing multiple faults. Arificial Intelligence 32(1):97- 130.
Reprinted in (Hamscher, Console, & de Kleer 1992).

] de Kleer, J., and Williains, B. C. 1989. Diagnosis with behavioral modes. In Proceedings of 1JCA 1-89,
1324- 1330. Reprinted in (Hamscher, Console, & de Kleer 1992).

(6] de Kleer, J., and Williams, B. C., eels. 1991. Arlificiel Intelligence, voluine 51. Elsevier.

[7] Drurniond, M.; Bresina, J.; and Swanson, K. 1994, Just- in-case scheduling. In Proceedings of the Twelfth
National Conference on Ariificial Intelligence,1098-1 104. Cambridge, Mass.: AA Al.

[8] Firby, R. J. 1978. Adaptive eczecution in complea dynamic worlds. Ph.1). Dissertation, Yale University.

[9] Gat, I8, 1992, Integrating plauning and reacting in a heterogeneous asynchronous architecture for controlling
real-world mobilerobots. I Proceedings of the Tenth National Coufe rence on Avlificial Intelligence. Cambridgge,
Mass.: AA Al.

[10] Gat,1..1996.CSL: A lauguage for supporting robust plan execution inautonomous spacecraft. In prepara-
tion.

[11] Georgeff, M. P. and Lansky, A. 1,. 1987. Procedural knowledge. Technical Report Technical Note 111,
Artificial Intelligence Center, SR1International.

[12] Hackney, J.; Bernard, D.; and Rasmussen, R.1993. The cassini spacecraft: Object oriented [light control
software. In 7998 Guidance and Control C onference.

[13] Hamscher, W.; Console,1..; and de Kleer, J. 1992. Readings in Model- Based Diagnosis. San Mateo, CA:
Morgan Kaufinann.

[14] Hayes-Roth,B. 1995. Anarchitecture for adaptive intelligent systems. Artificial intelligence 72.

[15] Liaird, J. I.; Newell, A.; and Rosenbloom, 1'. S, 1987. Soar: Anarchitecture for general intelligence. Ariificial
Intelligence 33(1).

[16] l.evinson,R. 1994, A general programining language for unified plauning and control. Artificial Intelligence.
Special issue on Planming and Scheduling.

[17] Musecttola, N. 1994. 11 S'1'S: Iutegrating planning andschedubng. In Yox, M., and Zweben, M ., eds.,
Intelligent Scheduling. Morgan Kaufiann.

[18] Musliner, I).; Durfee, Fi.; and Shin, K. 1993. Circa: A cooperal ive, intelligent, real-tiine coutrol architecture.
1WEE Transactio ns on Systems, Mauand Cyberneiics 23(6).

[19] Noreils, ¥. | and Chatila, R. 1995. Plan exccuti on monitoring and control architecture for robile robots.
TEEE Transactions o Kobotics and Aulomation.

[20] Siminons, R.1990. An architecture for coordinating planning, sensing, and action. In Proceedings 12 ARPA
Workshop on Innovative Approaches 10 Planning, Scheduling and Control, 292- 297. Morgan Kaufinann: San
Matco, CA.

[21]) Tambe, M.; Johuson, W. L.;; Jones, R. M.; Koss, F.; Laird, J. 11 ; Roser ibloom, I, §.; and Schwamb | K. 1995,
Intelligent agents for interactive sitnulation environments. Al Magazine 16(1):15 39.

[22] Weld, D. S, and de Kleer, 1., eds. 1990. Readings in Qualilalive Reasoning About Physical Sysiemns. San
Mateo, California: Morgan Kaufinann Publishers, Inc.

[23] Wilkins, D. P and Myers, K. 1.. 1995, A cotminon knowledge representatio n for plan generation and reactive
execution. Journal of Logic and Computation.

[24) Williatns, B. C., arid Nayak, 1'. P.1996. A model-basedapproach to reactive self-collficurirlg systems. It
Proceedings of AA AJ-96, 9“[1-97(8.

